Texture analysis may be used to extract quantitative information from hyperpolarized 3He MR ventilation images to help explain clinically-relevant outcomes and disease progression. We aimed to combine texture analysis with machine-learning to generate classification models for predicting worsening quality-of-life in ex-smokers with and without COPD. We identified six texture feature contributors, which outperformed standard imaging and clinical variables, with the top machine-learning model achieving a classification accuracy of 80.2% at predicting worsening quality-of-life within 2-3 years. These pilot results suggest that 3He MRI texture features may provide additional prognostic information to predict clinically-relevant changes in quality-of-life in ex-smokers.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords