Meeting Banner
Abstract #3957

Initial in vivo evidence of fibrin deposition in multiple sclerosis patients using fibrin-targeted 64Cu-FBP8 positron emission tomography

Constantina Treaba1, Ciprian Catana1,2, Eric Klawiter2,3, Susie Huang1,2, Grae Arabasz1, Valeria Barletta1,2, Elena Herranz1,2, Jacob Sloane4, Peter Caravan1,2, and Caterina Mainero1,2
1Radiology, Massachusetts General Hospital; A. Martinos Center for Biomedical Imaging, Boston, MA, United States, 2Harvard Medical School, Boston, MA, United States, 3Neurology, Massachusetts General Hospital, Boston, MA, United States, 4Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States


In multiple sclerosis, experimental and histopathological studies point to fibrinogen as a link between a damaged brain blood barrier and the initiation of the inflammatory demyelination and neurodegeneration in both cortex and white matter. Nevertheless, although the widespread accumulation of fibrinogen as fibrin deposits within multiple sclerosis lesions is well documented on postmortem brain tissue, in vivo evidence is still lacking. Using a novel fibrin-specific positron emission tomography probe, 64Cu-FBP8, we were able to demonstrate in vivo fibrin deposition not only in active white matter multiple sclerosis lesions but also in the cortex of a few multiple sclerosis patients.

This abstract and the presentation materials are available to members only; a login is required.

Join Here