Meeting Banner
Abstract #4088

Quantum Sensing of Local Neuronal Firings (qsLNF) in Human Brain via Proton (1H) MRI: Proof of Concept

Yongxian Qian1, Liz Calderon1, Xingye Chen1, Anli Liu2, Yvonne W. Lui1, and Fernando E. Boada1
1Radiology, New York University, New York, NY, United States, 2Neurology, New York University, New York, NY, United States

Synopsis

Neuronal firing generates fast action potentials along axon and slow postsynaptic currents at dendrites, which are difficult to detect and locate by scalp EEG and MEG placed above the skull. Here we propose local quantum sensing via endogenous proton (1H) nuclear spins inside firing neurons and detect magnetic fields indued by both action potentials and postsynaptic currents. Computer simulations and human studies showed that the proposed technique has the potential to non-invasively detect and locate neuronal firings in the brain through the acquisitions of FID signal on a 3T MRI scanner with multi-channel array coil.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords